Fine-tuning synaptic plasticity by modulation of Ca(V)2.1 channels with Ca2+ sensor proteins.
نویسندگان
چکیده
Modulation of P/Q-type Ca(2+) currents through presynaptic voltage-gated calcium channels (Ca(V)2.1) by binding of Ca(2+)/calmodulin contributes to short-term synaptic plasticity. Ca(2+)-binding protein-1 (CaBP1) and Visinin-like protein-2 (VILIP-2) are neurospecific calmodulin-like Ca(2+) sensor proteins that differentially modulate Ca(V)2.1 channels, but how they contribute to short-term synaptic plasticity is unknown. Here, we show that activity-dependent modulation of presynaptic Ca(V)2.1 channels by CaBP1 and VILIP-2 has opposing effects on short-term synaptic plasticity in superior cervical ganglion neurons. Expression of CaBP1, which blocks Ca(2+)-dependent facilitation of P/Q-type Ca(2+) current, markedly reduced facilitation of synaptic transmission. VILIP-2, which blocks Ca(2+)-dependent inactivation of P/Q-type Ca(2+) current, reduced synaptic depression and increased facilitation under conditions of high release probability. These results demonstrate that activity-dependent regulation of presynaptic Ca(V)2.1 channels by differentially expressed Ca(2+) sensor proteins can fine-tune synaptic responses to trains of action potentials and thereby contribute to the diversity of short-term synaptic plasticity.
منابع مشابه
Regulation of Presynaptic CaV2.1 Channels by Ca2+ Sensor Proteins Mediates Short-Term Synaptic Plasticity
Short-term synaptic plasticity shapes the postsynaptic response to bursts of impulses and is crucial for encoding information in neurons, but the molecular mechanisms are unknown. Here we show that activity-dependent modulation of presynaptic Ca(V)2.1 channels mediated by neuronal Ca(2+) sensor proteins (CaS) induces synaptic plasticity in cultured superior cervical ganglion (SCG) neurons. A mu...
متن کاملModulation of CaV2.1 channels by Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain.
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a key regulator of synaptic responses in the postsynaptic density, but understanding of its mechanisms of action in the presynaptic neuron is incomplete. Here we show that CaMKII constitutively associates with and modulates voltage-gated calcium (Ca(V))2.1 channels that conduct P/Q type Ca(2+) currents and initiate transmitter release. B...
متن کاملCalcium channels and short-term synaptic plasticity.
Voltage-gated Ca(2+) channels in presynaptic nerve terminals initiate neurotransmitter release in response to depolarization by action potentials from the nerve axon. The strength of synaptic transmission is dependent on the third to fourth power of Ca(2+) entry, placing the Ca(2+) channels in a unique position for regulation of synaptic strength. Short-term synaptic plasticity regulates the st...
متن کاملPharmacological Correction of Gating Defects in the Voltage-Gated Cav2.1 Ca2+ Channel due to a Familial Hemiplegic Migraine Mutation
Voltage-gated ion channels exhibit complex properties, which can be targeted in pharmacological therapies for disease. Here, we report that the pro-oxidant, tert-butyl dihydroquinone (BHQ), modulates Ca(v)2.1 Ca²⁺ channels in ways that oppose defects in channel gating and synaptic transmission resulting from a familial hemiplegic migraine mutation (S218L). BHQ slows deactivation, inhibits volta...
متن کاملSense and sensibility in the regulation of voltage-gated Ca(2+) channels.
Voltage-gated Ca(2+) channels are crucial for neurotransmitter release and other neuronal functions, and their activity-dependent regulation could underlie various aspects of synaptic plasticity. Recent studies have identified Ca(2+)-sensing proteins involved in Ca(2+)-channel modulation. These have complex effects on channel gating, and data suggest that the actions of multiple Ca(2+) sensors ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 42 شماره
صفحات -
تاریخ انتشار 2012